Necessary and Sufficient Conditions for Viability for Semilinear Differential Inclusions

نویسندگان

  • OVIDIU CÂRJĂ
  • MIHAI NECULA
  • IOAN I. VRABIE
چکیده

Given a set K in a Banach space X, we define: the tangent set, and the quasi-tangent set to K at ξ ∈ K, concepts more general than the one of tangent vector introduced by Bouligand (1930) and Severi (1931). Both notions prove very suitable in the study of viability problems referring to differential inclusions. Namely, we establish several new necessary, and even necessary and sufficient conditions for viability referring to both differential inclusions and semilinear evolution inclusions, conditions expressed in terms of the tangency concepts introduced.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Viability Result for Nonconvex Semilinear Functional Differential Inclusions

We establish some sufficient conditions in order that a given locally closed subset of a separable Banach space be a viable domain for a semilinear functional differential inclusion, using a tangency condition involving a semigroup generated by a linear operator.

متن کامل

Existence Results on Random Impulsive Semilinear Functional Differential Inclusions with Delays

This article presents the result on existence of mild solutions for random impulsive semilinear functional differential inclusions under sufficient conditions. The results are obtained by using the Martelli fixed point theorem and the fixed point theorem due to Covitz and Nadler.

متن کامل

On controllability for nonconvex semilinear differential inclusions

We consider a semilinear differential inclusion and we obtain sufficient conditions for h-local controllability along a reference trajectory.

متن کامل

Nonlocal Controllability of Mixed Volterra-fredholm Type Fractional Semilinear Integro-differential Inclusions in Banach Spaces

In this paper, we establish a sufficient conditions for the nonlocal controllability of mixed VolterraFredholm type fractional semilinear integro-differential inclusions in Banach spaces. The results are obtained by using fractional calculus, operator semigroups and Bohnenblust-Karlin’s fixed point theorem. Finally, an example is given to illustrate the theoretical results.

متن کامل

Semilinear nonlocal differential inclusions in Banach spaces

This paper is concerned with the existence of mild solutions to a class of semilinear differential inclusions with nonlocal conditions. By using the fixed point theory for multivalued maps, we get some general results on nonlocal differential inclusions, which include some recent results on nonlocal problems as special cases. An example of partial differential equations is provided to illustrat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008